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established that if f € M2[0, c0) and ¢{,, {, are bounded stopping times,
§; € §,, then

B{ [* o) awtois, | =0

E{ ;2 f(s) dw(s) 2| ?’7§1} = E{ f:z Yii ds|637§1}

a.s. The proof of these formulas is similar to the proof of Theorem 4.3. It
employs Theorem 2.8 which remains valid for n-dimensional stochastic
integrals.

We conclude this section with an extension of Theorem 6.5 to n di-
mensions.

Theorem 7.5. Let f=(f,...,f,) belong to L2[0, T], and let a, B be
positive numbers. Then

P{Oingé(TU: AN dwln) — & fo‘ AN dk] > B} < et (122)

The proof is similar to the proof of Theorem 6.5. First we prove (7.12) in
case f(¢) is a step function, using the martingale inequality, and then proceed
to general f by approximation.

The inequality (7.12) is referred to as the exponential martingale inequal-
ity.

Corollary 6.6 also extends to the present n-dimensional case, i.e.,

ewpl ['fadw -1 [ 1fPas)

is a supermartingale.

PROBLEMS

1. Prove (2.20).

2, Prove Theorem 3.9 [Hint: Apply Theorem 3.6 to £f(¢), § bounded and
%F, measurable.]

3. Suppose fE€L2[0,00) and { is a stopping time such that
E f§f¥t) dt < co. Prove that

E J:f(t) dw(t) =0, E

4. Let

2

f(ff(t) dw(t)| = E j:fz(t) dt.

o) = cexpll/ (|x2 = D] if |x] <1
p(x) {() if |x|>1
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for r€ R", where c is a positive constant such that {g.p(x)dx = 1. If fis
a function locally integrable, then

e =% [ o)) dy

€

is called a mollifier of f. Prove:

@ Jfisin C®R"™);
(ii) If K is a compact set and € a bounded open set containing K,
then

1AW =& [ ol ) ay

€ €

= p(z) f(x — &) dz (x EK),

j2l<1

provided € < dist(K, R"\Q).
(iii) If f € LP(Q) for some p > 1, then

(L a)<{ ira)”
(iv) If fe LP(Q) for some p > 1, then

f If — fIPdx—0  if e-0.

K

5. Let f(x) be a continuous function for @ < x < S, and let
k

S8 - (x = 9] fly) dy

Sh -y dy
Let § be any positive number. Prove that (P,f)(x) — f(x) uniformly in
xEfa+ 8,8 —8]as k—oo. [Hint: [[{(1 — y®)* dy/f1 — y?)* dy] -0

if k — oo, for any e > 0.]
6. Let f(x) be a continuous function in an n-dimensional interval

I={xa <x< B,1<i<n} andlet
k
B ST - (5= ) F(9) dy - dy,

(Buf )(x) = P—
[fl-l(l - 92) dy

k=12, ...).

(Pkf)(x) =

(k=12 ...)
Let I, be any subset lying in the interior of I. Prove that, as k—co,
(Pf)(x)—>f(x) uniformly in x€1I,
Notice that P,f is a polynomial. It is called a polynomial mollifier of f.
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7. If in the preceding problem f belongs to C™(I) and f vanishes in a
neighborhood of the boundary of I, then

ik e .
axi - - - Oxn (Pf)l) ax*x. - ax,}f{") if ko,
uniformly in x € I, for any (i}, ..., 4,) suchthat 0 < i; + - - - + i, < m.

8. If feC™(R"), then there exists a sequence of polynomials Q, such
that, as k-«aoo,

gt

aal see 4 d,
dxjt - - ax*" Qi) dxjt - - -

8x'"f() for 0< i, + - +i <m,

uniformly in x in compact subsets of R". [Hint: Approximate f by functions
with compact support, and apply Problem 7 to these functions.]
9. Ifin the previous problem it is assumed that f, f, (1 < i < mn)andf, .
(2 € 4,§ € n) are continuous in R" (instead of f € C"‘(R )), then
9 of .
i o, Q= 3, (1<i<n),

i

02 o
dx; Ox; G dx; Ox;

uniformly on compact subsets of R".

10. Let f(x, t) be a continuous function in (x, ) ER" X [0, ) together
with its derivatives f,, f, , fx «; Prove that there exists a function F con-
tinuous in (x, t) € R" X R! together with its derivatives F,, F,, F, p such
that F(x, t) = f(x, t) ifxeR", t > 0.

11. Let f(x,¢t) = f(x,,...,x,, t) be a continuous function in
(x, )ER™ X [0, oo) together with its derivatives f,, f, , f,, ., Then there
exists a sequence of polynomxals Qm(x t) such that, as m—oo0,

2
L A A

uniformly in compact subsets. [Hint: Combine Problems 9, 10.]

12. Prove (5.8).

13. Prove (5.14) and complete the proof of (5.13).

14. Let fELZ[0, o0), |f| € K (K constant) and let d£(t) = f(¢) dw(¢),
£(0) = 0 where w(t) 1s a Browman motion. Prove:

(i) if f < B, then E{{(t)? < B%;
(ii) if f > a > 0, then E|£(t)]® > o*.
153. Prove Theorem 5.3. [Hint: Proceed as in the proof of Theorem 5.2, but
with
D(w(t), t) = flg,o + ait + byw(t), ..., &0 + aut + bw(t))

(2<i,j<n)
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where £, @, are random variables and the b, are random n-vectors; cf. Step
4]

6. Let &(t) = (5b(t) dw(t) where b is an n X n matrix belonging
toL2[0, o). Suppose that d§, d§ = 0 if i # f, d§, &, = dt (see (7.8) for the
definition of d§; dé,-), forall 1 < i, j < n. Prove that §(¢) is an n-dimensional
Brownian motion. [Hint: First proof: Use Theorem 3.6.2. Second proof:
Suppose the elements of b are bounded step functions and let {(¢)
= expliy - &(t) + v*/2). By Itd’s formula d{ = i{y dw. By Theorem 2.8

E[ei‘r-&t)‘@s] = ei'r'&(s)e—'r*{t——s)/{
Use Problem 2, Chapter 3.]

17. Let y >0, a >0, 1 = min{{; w(t) = a} where w(t) is one-dimen-
sional Brownian motion. Prove that P(tr < %) = 1 and

Ee™ " = exp(— \/E}T a).

[Hint: For any ¢ > 0,
_ & ~c2/2t
P[ 013%:11)(3) > c] < P[ Orélgzt(w(s) 5 s) > B} <e
where a = ¢ /t, B = ¢/2. Hence P(r < o) = 1. Since y(t) = exp[yw(t) —
v%/2] is a martingale, so is y(¢t A 7). Hence

E exp[yw(t AT)— -572(15 A T)] = 1.

Take t T 00.]
18. Under the conditions of the previous problem

2
E‘m)dt.

=0 -
P(re dt) P exp( 57

[Hint: Use the fact (see, for instance, Feller [1]) that if the Laplace transform
of two probability distributions concentrated on [0, o) coincide, then the
probability distributions coincide.]

19. If w(t) is a Brownian motion and 0 < y, x < y, then

P(w(t) € dr, max w(s) € dy)

0<s<t
{2\ (2y — z)?
= ( " ) 2y ~ x) exp[ 57 dx dy.
{Hint: Use Problem 12, Chapter 2 and Theorem 3.6.3 to deduce that
t
Plw(t) € dx, max w(s) > y| = [ P(r € ds)Plw(t - s) + y € da]
0

0<s<t

where 7 = min{#; w(t) = y}, and apply the preceding problem.]
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20. Let f(t) be a continuous process in LJ[0, T] and let I, : ¢, o =
0<t ,<:---<t,,=Tbe a partition w1th mesh |II,| -0 as n — o0.
Define

Zf t, : t, a+1) - w(tn,i)) + (tn,f)(t - tn,f)

lf tn,i\t<tn,;’+l'

Prove that for some subsequence {n’} of {n},
[ £5) duo(s) ~ gt
21. Let o(x, t) be a measurable function in (x, £) € R" such that
lo(x, ¢) = o(%, )] < mllx — &), w10 8]0,
and let f(t) be an n-dimensional continuous process in L2 [0, T]. Let

(. 1) ...—f (L= )olx,5)ds  (2e <)

where p(t) is defined as in Lemma 1.1 and o(x, s) = o(x, 0) if —1 < s < 0.
Prove:

sup -0 as. if n" — o0,

i) fqlo(x, t) = o.(x, t)]> dt — O uniformly in x in bounded sets, as
€—0.

@) 5 o(f(0 0~ af() OF di =0 as. as € 0
(i) supocrcrlfs o(f(8), ) dwls) = [h o, (f(s), 5) dw(s) 0 as. for

some sequence ¢, | 0.

[Hint: for (i), use the uniform continuity in x of [o(x, t)dt and of

fo.(x, t) dt.]



